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Abstract: This paper presents an outlier detection technique for univariate normal datasets. Outliers are observations that 

lips an abnormal distance from the mean. Outlier detection is a useful technique in such areas as fraud detection, financial 

analysis, health monitoring and Statistical modelling. Many recent approaches detect outliers according to reasonable, pre-

defined concepts of an outlier. Methods of outlier detection such as Gaussian method of outlier detection have been widely 

used in the detection of outliers for univariate data-sets, however, such methods use measure of central tendency and dispersion 

that are affected by outliers hence making the method to be less robust towards detection of outliers. The study aimed at 

providing an alternative method that can be used in outlier detection for univariate normal data sets by deploying the measures 

of variation and central tendency that are least affected by the outliers (median and the geometric measure of variation). The 

study formulated an outlier detection formula using median and geometric measure of variation and then applied the 

formulation on randomly simulated normal dataset with outliers and recorded the number of outliers detected by the method in 

comparison to the other two existing best methods of outlier detection. The study then compared the sensitivity of the three 

methods in outlier detection. The simulation was done in two different ways, the first considered the variation in mean with a 

constant standard deviation while the second test held the mean constant while varying the standard deviation. The formulated 

outlier detection technique performed the best, eliminating the most required number of outliers compared to other two 

Gaussian outlier detection techniques when there was variation in mean. The study also established that the formulated method 

of outlier detection was stricter when the standard deviation was varied but still stands out to be the best as an outlier is defined 

relative to the mean and not the standard deviation. The study established that the formulated method is more sensitive than the 

Gaussian Method of outlier detection but performed as well as the best existing outlier detection technique. In conclusion, the 

study established that the formulated method could be employed in outlier detections for univariate normal data-sets as it 

performed almost the same to the best existing method of outlier detection for univariate data-sets. 
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1. Introduction 

Outlier detection; also known as anomaly detection this 

process is the identification of rare items [1, 2] events and 

observations which arise and are significantly different from 

the other observations in the data [3, 4]. Identification of this 

events (outliers) is very important given they may lead to bad 

data and this may lead to poor running of the experiment for 

they may hide very essential information about the data. If it 

can be determined earlier that a point is outlying then it can 

be worth ejecting it for the purposes of better results. 

Secondly, in some cases, it may not be possible to deter- 

mine if an outlying point is bad data since Outliers may be 

due to random variation or may indicate something 

scientifically interesting. In any event, we typically do not 

want to simply delete the outlying observation. However, if 

the data contains significant outliers, we may need to 

consider the use of robust statistical techniques. [5-7] Before 

application of these techniques we have to determine whether 

the outlier is univariate or multivariate. Univariate outliers 

can be found when looking at a distribution of values in a 

single feature space. Multivariate outliers can be found in an 

n-dimensional space (of n-features). Looking at distributions 

in n-dimensional spaces can be very difficult for the human 

brain, that is why we need to train a model to do it for us [8, 



2 Ooko Silas Owuor et al.:  Outlier Detection Technique for Univariate Normal Datasets  

 

9]. Outlier detection is an important research problem in 

data mining that aims to find objects that are consider- ably 

dissimilar, exceptional and inconsistent with respect to the 

majority data in an input database [10]. The following are 

the existing outlier detection techniques that the study 

focused on. 

1.1. Gaussian Model 

Estimation of mean and standard deviation is done in 

training stage using the maximum likelihood estimates 

(MLE). A wide range, nearly 100 of outlier tests has been put 

in place in different ways depending on the data set and the 

parameters like mean and variance and the expected values 

of the outliers. To ensure the test carried are optima or close 

to optima statistical discordancy tests are usually carried out 

in the test stage [11-13]. The usually used outlier test for 

normal distribution is the mean-variance and Boxplot tests. 

In the mean variance test for Gaussian distribution N(µ, σ), 

where the population has mean and variance σ. Outlier is 

considered to be a point that lie 3 or more standard deviation 

i.e. > 3σ away from the mean. 

Similarly, the tests can be applied to some other 

distribution like t-distribution and the Poisson distribution 

with the former featuring a latter tail and the latter a longer 

right tail than a normal distribution. 

The box plot test also gives a profound test by deployment 

of 5 major attributes i.e. smallest non-outlier observation 

[min], lower quartile [Q1], upper quartile [Q3], medium and 

the largest non-outlier observation [max]. The quantity (Q3 

Q1) is called the interquartile range (IQR). This helps use 

clearly define the boundary beyond which the data will be 

considered an outlier. A point X1 is labeled or referred to as 

an outlier if, Xi>Q3+k(IQR) or Xi<Q1-k(IQR). 

 

Figure 1. Outliers are points > |µ + 3σ|. for some k=1.5. 

 

Figure 2. Outlier detection by fitted Gaussian model. 

Basing our argument on low dimensional outlier detection 

technique, we settle with the Gaussian model which defines 

an outlier as a point X > |μ	 � 	3σ|  as the best existing 

detection technique as it takes into consideration both the 

probabilistic and normal distributions. 

 

Figure 3. Outliers are points > |µ + 3σ|. 

However, this method has a number of shortcomings since 

by Central Limit Theorem (Which states; If you have small, 

independent random variables, then their sum is distributed 

approximately a bell curve [14-16]). By so doing, if an 

outlier occurs at some point away from the normal curve, 

then the normal curve will shift towards the outlier. 

The anomaly/outlier towards the left as shown in Figure 5 

will shift the normal curve towards the left as illustrated 

below; 

 

Figure 4. Positioning of an outlier towards the left of the curve. 

 

Figure 5. Shift of the normal curve towards the outlier changing the mean 

but keeping the standard deviation constant. 

In an event outliers occur both side of the curve then it’s 

likely to spread the normal curve having an effect on the 
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standard deviation but keeping the mean constant. This is 

illustrated in the Figure 7 below; 

 

Figure 6. Stretching of the curve when outliers occur at both sides of the 

curve. 

Since the existing Gaussian model detection technique 

uses parameters that are affected by the outliers as illustrated 

above, the study would like to come up with a technique that 

does not rely on these parameters µ and σ. In this regard, the 

study will replace the former with Median since the Median 

is least affected by the outliers [17, 18] and the latter with the 

Geometric measure because it takes into account the 

compounding that occurs from period to period. Because of 

this, investors usually consider the geometric mean a more 

accurate measure of returns than the arithmetic mean [19]. 

In so doing we will have our new detection technique 

define outlier as a point X >|Med	 � 	3g| 
Where; 

Med is the median and g is the geometric measure. The 

main objectives of this study is Outlier detection for 

univariate data set using geometric technique. 

1.2. Regression Model 

A regression model is also used to detect the outliers. In 

this scenario, an outlier is considered to be an observation for 

which the residual is larger compared to other observations in 

the data-set. Such observations are imputed accordingly for 

higher accuracy in statistical findings. This study however is 

going to focus on the Gaussian detection techniques. 

2. Methods 

For normal observations, the outlier detection technique 

by Gaussian model stipulates that an outlier is given by a 

point X > �X ± 3��. Since the arithmetic mean as a measure 

of central tendency that is affected by the outliers, and we 

know that in a perfectly symmetric data, the mean, the 

mode and the median are the same [20, 21], the study 

replaced the mean with the median since the median is a 

measure of central tendency that is not affected by the 

existence of the outliers in the dataset [22]. This lead to the 

same equation given as; 

X > |Med ± 3σ|                          (1) 

The study expects the formula to be better than the 

Gaussian outlier detection method given we have done 

away with a measure of central tendency that is affected by 

the outliers. Moreover, since the standard deviation is a 

measure of variation that is affected by the existence of the 

outliers in the dataset and definitely will affect the accuracy 

of the detection, the study therefore found it necessary to 

replace the standard deviation with a geometric mean. The 

geometric mean however was calculated around the median, 

a measure of central tendency that is not affected by the 

outliers [22, 23], so as to come up with a geometric mean 

that is also not affected by the existence of the outliers in 

the dataset. The study expects this to make our outlier 

detection formula even better. The formula will therefore be 

given as; 

X > |Med ± 3G|                               (2) 

The next task now is to calculate the geometric averages 

with respect to the mean, this is given as, the study borrowed 

a concept from [24] 

� = �∏ ��� − ���������
  

While formulating the G, the study established that most 

important is the deviation from the median can either take a 

positive, a negative or a zero value, making the formula not 

applicable in an event we get a negative value since we 

cannot get a real root of a negative number. In response to 

this shortcoming, the study took the absolute of the 

deviations given the rule of geometric averaging holds that 

most important is the magnitude of the deviation and not 

the direction [25, 26]. By doing so, we obtain the equation 

as; 

� = �∏ |�� − ���|�����
  

The next challenge comes when some data points are 

equal to the median leading to zero deviation, thus, the 

product of the deviation from the median will eventually 

be zero leading to indefinite root. In response to this 

problem, the study added an arbitrary constant k. The 

study derived constant K by identifying the best constant 

that best detects outliers in low dimensional data-set and 

as well have the least effect to the deviation, the constant 

was obtained by plotting these constants against outliers 

removed in given sets of data. This is as shown in Figure 7 

below; 
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Figure 7. Curve used to derive the most appropriate k-value. 

The curve flattened at the 9
th

 constant which was 0.1, even 

though the other constants removed the same number of 

outliers after flattening, the study considered the least of 

these constants (0.1) which will have the least effect on the 

deviation from the median given the study doesn’t want to 

interfere much with the deviation from the median. The 

formula therefore becomes; 

� =  ∏ |��| � !, � = 1…%�� = �������
�

  

Where di=|xi-Med| and k=0.1 

The study further introduced logarithms in order to help in 

eliminating infinite number that are likely to arise when the 

population size is large as the geometric measure of variation 

from the median is being calculated. This gives; 

� = &��' (∑ *+,	�|-�./01|23��456 � 7 , �1 8 �2 8 ⋯ 8 ���
0, �1 = �2 = ⋯ = ���  

Where k=0.1 

Therefore the new formula for outlier detection will state 

that an outlier is any point given as; 

X>|Med±3�| 

3. Results 

To test for the effectiveness of the newly invented formula, 

the study examined and compared the sensitivity of the two 

Gaussian detection techniques (Xi>Q3+k(IQR) or Xi<Q1-

k(IQR)). 

The study formulated random normal data-sets to help in 

randomly obtaining the data for simulation. This was done by 

combining two randomly formulated data-sets with varying 

mean and standard deviation to help examine the effect of 

changing either the mean or the standard deviation to the 

sensitivity of the model. Given the Gaussian formula under 

scrutiny (X > |μ	 � 	3�| ) uses two measure of central 

tendency that are affected by the outliers, this process was 

done in two ways; 

1. Combining two data-sets with constant standard 

deviation but varying mean 

The first simulation is summarized in the table below; 

Table 1. Outliers detected by all formulas with first set of data. 

Technique New formula Gaussian 1st equation Gaussian 2nd Equation 

Outliers available 5 5 5 

Outliers removed 7 6 4 

 

From table 1, the first simulation, the study combined the 

first data set (X1; n=50, µ = 4 and σ = 2) with (X2; n=5, µ = 

30 and σ = 2), with (X2; n=5, µ = 30 and σ = 2). The 

expected 5 outliers from the combined datasets were then 

subjected to the three detection techniques. The study 

simulated the dataset in the first Gaussian detection technique 

(Xi > Q3 +k(IQR)) or Xi < Q1 −k(IQR)), 6 outliers were 

detected as shown in the table above (Refer to Appendix 1: 

Figure 8). When the same dataset was simulated against the 

second Gaussian equation (X >|µ + 3σ|), 4 outliers were 

detected (Refer to Appendix 1: Figure 9). 

When the outliers were simulated in the new equation, 7 

outliers were detected (refer to Appendix 1: Figure 10). 

From the results, the new formula eliminated the most 

number of outliers (7), the number exceeds the expected 

number of outliers, 5, since when two datasets of different 

means are combined they form a new mean, therefore the 

outliers are likely to be more or less than were suppose. 
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The Gaussian second equation performed second best with 

6 outliers eliminated. The Gaussian equation under scrutiny 

managed to detect only 4 outliers, this may be attributed to 

by the fact that it use the measures of central tendency that is 

affected by the outliers. 

The study examined another pair of datasets, (X3; n=250, 

µ = 15 and σ = 5) and (X4; n=10, µ = 80 and σ = 5). 

The table below summarizes the simulations. 

Table 2. Outliers detected by all formulas with second set of data. 

Technique New formula Gaussian 1st equation Gaussian 2nd Equation 

Outliers available 10 10 10 

Outliers removed 22 12 10 

 

From table 2, when the data was simulated using the first 

Gaussian formula (refer to Appendix 2: Figure 11), 10 

outliers were detected. When the data was simulated against 

the second Gaussian formula (refer to Appendix 2: Figure 

12), 10 outliers were detected. 

Finally, when the dataset was simulated against the new 

detection technique and 22 outliers were detected. 

The new formula eliminated the more outliers compared to 

the rest which may be contributed to by the fact that it uses 

measures that are least affected by the outliers. The Gaussian 

equation with the interquartile range once again performed 

better, eliminating 12 outlies. The equation under scrutiny 

(the second Gaussian equation) eliminated the least number 

of outliers. 

The number of outliers removed differ and may be even 

more than expected because the moment two datasets are 

combined, they form a new mean interfering with the number 

of outliers as outliers by definition, are observations that lip 

an abnormal distance from the mean. 

The study carried another sensitivity test on another sets of 

datasets by combining (X5; n=150, µ = 90 and σ = 5) with 

(X6; n=25, µ = 200 and σ = 5). 

The summary is as shown in the table below; 

Table 3. Outliers detected by all formulas with third set of data. 

Technique New formula Gaussian 1st equation Gaussian 2nd Equation 

Outliers available 10 10 10 

Outliers removed 27 26 26 

 

When the outliers were simulated using the first Gaussian 

equation (Xi > Q3 + k(IQR) or Xi < Q1 k(IQR)), 26 outliers 

were eliminated (Refer to Appendix 3: Figure 14). 

When the outliers were simulated using the Gaussian 

second equation, 27 outliers (refer to Appendix 3: Figure 

15). 

Finally, when the data was simulated against the new 

detection technique, 26 outliers were detected (Refer to 

Appendix 3: Figure 16). 

The three techniques performed relatively the same even 

though the new technique eliminated one more outlier than 

the rest. 

2. Combining two data-sets with constant mean but 

varying standard deviation 

The study examined the sensitivity by combining (X7; 

n=250, µ = 40 and σ = 45) with (X8; n=15, µ = 40 and σ = 5). 

The finding are summarized in the table as shown; 

Table 4. Outliers detected by all formulas with first set of data. 

Technique New formula Gaussian 1st equation Gaussian 2nd Equation 

Outliers available 15 15 15 

Outliers removed 27 4 1 

 

Simulating the outliers using the Gaussian first equation, 4 

outliers were removed. The Gaussian second equation 

eliminated 1 outlier and the new detection technique removed 

27 outliers. 

The study also examined the following datasets; 

(X9; n=500, µ = 20 and σ = 10) and (X10; n=55, µ = 

20 and σ = 5). The summary is as shown in the table 

below; 

Table 5. Outliers detected by all formulas with second set of data.. 

Technique New formula Gaussian 1st equation Gaussian 2nd Equation 

Outliers available 55 55 55 

Outliers removed 72 8 3 

 

Simulating the outliers using the Gaussian first equation, 4 

outliers were ejected from the data-set, the Gaussian second 

equation detected 1 outlier while the new equation once 

again removed the most, 27. This may be as a result the use 

of measures of central tendencies that are least affected by 

the outliers. Lastly, the study examined the sensitivity in one 

more pair of data-sets; (X9; n=500, µ = 20 and σ = 10) with. 

When the outliers were detected, the Gaussian first equation 

ejected 8 outliers, 3 by the second equation and 72 by the 

new equation. The new equation is stricter because the 
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measures it uses are not affected by the outliers. 

4. Summary 

The study sought to determine the Outlier detection for 

univariate data set using geometric technique. The study 

sought to empirically detect outliers using the univariate 

normal outlier detection technique in simulated data. The 

study also aim to measure precision of the univariate outlier 

detection model in comparison to the Gaussian outlier 

detection models. The data used in this study was randomly 

generated from a normal distribution. This chapter gives a 

summary of the findings, makes conclusions and 

recommendations based on the findings. 

1) Summary of findings 

The study sought to establish an outlier detection 

technique for univariate normal datasets. The measures of 

central tendency in the Gaussian equation (X > µ + 3σ) which 

are highly affected by the outliers were replaced by those that 

are least affected by the outliers to form a new equation 

which defined an outlier as a point X > Med 3G. 

The study sought to empirically detect outliers using 

univariate normal outlier detection technique in simulated 

data. The normal data sets were randomly generated and 

simulation done using the new formula, the study noted that 

the formula was able to detect the outliers in the data-set. 

Univariate normal outlier detection model in comparison to 

the Gaussian outlier detection model. The study formulated 

same sets of datasets and observed the sensitivity of the 

models. 

2) Conclusion 

After conducting sensitivity test on several sets of datasets, 

the study established that the new formula is the best in 

outlier detection, in all cases examined it performed better 

than the Gaussian detection model (X > µ + 3σ). The second 

Gaussian equation (Xi > Q3 + k(IQR) or Xi < Q1 k(IQR)) 

performed as well as the new formula (X > Med +/- 3G). 

When there was variation in mean but constant standard 

deviation. This, however, was not the case when standard 

deviation was varied with constant mean, in this case the new 

model detected more outliers than any of the two Gaussian 

equations. This is due to the fact that the new equation used 

on the measures that are least affected by the outliers. 

The new equation proved more sensitive and precise in 

outlier detection. Even though the new technique was stricter 

when the standard deviation was varied, it still stands as the 

best technique according to the study as an outlier is defined 

relative to the mean and not the standard deviation. 

Appendix 

Appendix 1. Outlier Detection Simulation for Small Data Sets with Mean Variation 

 

Figure 8. Sensitivity of Gaussian 1st equation with variation in mean. 

 

Figure 9. Sensitivity of Gaussian 2nd equation with variation in mean. 

 

Figure 10. Sensitivity of the New Equation with variation in mean. 
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Appendix 2. Outlier Detection for Moderately Large Data Sets with Mean Variation 

 

Figure 11. Sensitivity of Gaussian 1st equation with variation in mean. 

 

Figure 12. Sensitivity of Gaussian 2nd equation with variation in mean. 

 

Figure 13. Sensitivity of the New Equation with variation in mean. 
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Appendix 3. Outlier Detection Simulation for Large Data Sets with Mean Variation 

 

Figure 14. Sensitivity of Gaussian 1st equation with variation in mean. 

 

Figure 15. Sensitivity of Gaussian 2nd equation with variation in mean. 

 

Figure 16. Sensitivity of the New Equation with variation in mean. 
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Appendix 4. Outlier Detection Simulation for Large Data Sets with Standard Deviation Variation 

 

Figure 17. Sensitivity of Gaussian 1st equation with variation in standard deviation. 

 

Figure 18. Sensitivity of Gaussian 2nd equation with variation in standard deviation. 

 

Figure 19. Sensitivity of the New Equation with variation in standard deviation. 
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Appendix 5. Outlier Detection Simulation for Very Large Data Sets with Standard Deviation Variation 

 

Figure 20. Sensitivity of Gaussian 1st equation with vari- ation in standard deviation. 

 

Figure 21. Sensitivity of Gaussian 2nd equation with vari- ation in standard deviation. 
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Figure 22. Sensitivity of the New Equation with variation in standard deviation. 
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