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Abstract: This paper presents an outlier detection technique for univariate normal datasets. Outliers are observations that
lips an abnormal distance from the mean. Outlier detection is a useful technique in such areas as fraud detection, financial
analysis, health monitoring and Statistical modelling. Many recent approaches detect outliers according to reasonable, pre-
defined concepts of an outlier. Methods of outlier detection such as Gaussian method of outlier detection have been widely
used in the detection of outliers for univariate data-sets, however, such methods use measure of central tendency and dispersion
that are affected by outliers hence making the method to be less robust towards detection of outliers. The study aimed at
providing an alternative method that can be used in outlier detection for univariate normal data sets by deploying the measures
of variation and central tendency that are least affected by the outliers (median and the geometric measure of variation). The
study formulated an outlier detection formula using median and geometric measure of variation and then applied the
formulation on randomly simulated normal dataset with outliers and recorded the number of outliers detected by the method in
comparison to the other two existing best methods of outlier detection. The study then compared the sensitivity of the three
methods in outlier detection. The simulation was done in two different ways, the first considered the variation in mean with a
constant standard deviation while the second test held the mean constant while varying the standard deviation. The formulated
outlier detection technique performed the best, eliminating the most required number of outliers compared to other two
Gaussian outlier detection techniques when there was variation in mean. The study also established that the formulated method
of outlier detection was stricter when the standard deviation was varied but still stands out to be the best as an outlier is defined
relative to the mean and not the standard deviation. The study established that the formulated method is more sensitive than the
Gaussian Method of outlier detection but performed as well as the best existing outlier detection technique. In conclusion, the
study established that the formulated method could be employed in outlier detections for univariate normal data-sets as it
performed almost the same to the best existing method of outlier detection for univariate data-sets.
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mine if an outlying point is bad data since Outliers may be
due to random variation or may indicate something
scientifically interesting. In any event, we typically do not
want to simply delete the outlying observation. However, if

1. Introduction

Outlier detection; also known as anomaly detection this
process is the identification of rare items [1, 2] events and

observations which arise and are significantly different from
the other observations in the data [3, 4]. Identification of this
events (outliers) is very important given they may lead to bad
data and this may lead to poor running of the experiment for
they may hide very essential information about the data. If it
can be determined earlier that a point is outlying then it can
be worth ejecting it for the purposes of better results.
Secondly, in some cases, it may not be possible to deter-

the data contains significant outliers, we may need to
consider the use of robust statistical techniques. [5-7] Before
application of these techniques we have to determine whether
the outlier is univariate or multivariate. Univariate outliers
can be found when looking at a distribution of values in a
single feature space. Multivariate outliers can be found in an
n-dimensional space (of n-features). Looking at distributions
in n-dimensional spaces can be very difficult for the human
brain, that is why we need to train a model to do it for us [8,
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9]. Outlier detection is an important research problem in
data mining that aims to find objects that are consider- ably
dissimilar, exceptional and inconsistent with respect to the
majority data in an input database [10]. The following are
the existing outlier detection techniques that the study
focused on.

1.1. Gaussian Model

Estimation of mean and standard deviation is done in
training stage using the maximum likelihood estimates
(MLE). A wide range, nearly 100 of outlier tests has been put
in place in different ways depending on the data set and the
parameters like mean and variance and the expected values
of the outliers. To ensure the test carried are optima or close
to optima statistical discordancy tests are usually carried out
in the test stage [11-13]. The usually used outlier test for
normal distribution is the mean-variance and Boxplot tests.
In the mean variance test for Gaussian distribution N(u, o),
where the population has mean and variance c. Outlier is
considered to be a point that lie 3 or more standard deviation
i.e. > 30 away from the mean.

Similarly, the tests can be applied to some other
distribution like t-distribution and the Poisson distribution
with the former featuring a latter tail and the latter a longer
right tail than a normal distribution.

The box plot test also gives a profound test by deployment
of 5 major attributes i.e. smallest non-outlier observation
[min], lower quartile [Q1], upper quartile [Q3], medium and
the largest non-outlier observation [max]. The quantity (Q3
Q1) is called the interquartile range (IQR). This helps use
clearly define the boundary beyond which the data will be
considered an outlier. A point X1 is labeled or referred to as
an outlier if, Xi>Q3+k(IQR) or Xi<Q1-k(IQR).
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Figure 1. Outliers are points > |u + 3o|. for some k=1.5.
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Figure 2. Outlier detection by fitted Gaussian model.

Basing our argument on low dimensional outlier detection
technique, we settle with the Gaussian model which defines
an outlier as a point X > |pu + 30| as the best existing
detection technique as it takes into consideration both the
probabilistic and normal distributions.
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Figure 3. Outliers are points > |u + 30|.

However, this method has a number of shortcomings since
by Central Limit Theorem (Which states; If you have small,
independent random variables, then their sum is distributed
approximately a bell curve [14-16]). By so doing, if an
outlier occurs at some point away from the normal curve,
then the normal curve will shift towards the outlier.

The anomaly/outlier towards the left as shown in Figure 5
will shift the normal curve towards the left as illustrated
below;
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Figure 4. Positioning of an outlier towards the left of the curve.
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Figure 5. Shift of the normal curve towards the outlier changing the mean
but keeping the standard deviation constant.

In an event outliers occur both side of the curve then it’s
likely to spread the normal curve having an effect on the
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standard deviation but keeping the mean constant. This is
illustrated in the Figure 7 below;
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Figure 6. Stretching of the curve when outliers occur at both sides of the
curve.

Since the existing Gaussian model detection technique
uses parameters that are affected by the outliers as illustrated
above, the study would like to come up with a technique that
does not rely on these parameters J and o. In this regard, the
study will replace the former with Median since the Median
is least affected by the outliers [17, 18] and the latter with the
Geometric measure because it takes into account the
compounding that occurs from period to period. Because of
this, investors usually consider the geometric mean a more
accurate measure of returns than the arithmetic mean [19].

In so doing we will have our new detection technique
define outlier as a point X >|Med + 3g|

Where;

Med is the median and g is the geometric measure. The
main objectives of this study is Outlier detection for
univariate data set using geometric technique.

1.2. Regression Model

A regression model is also used to detect the outliers. In
this scenario, an outlier is considered to be an observation for
which the residual is larger compared to other observations in
the data-set. Such observations are imputed accordingly for
higher accuracy in statistical findings. This study however is
going to focus on the Gaussian detection techniques.

2. Methods

For normal observations, the outlier detection technique
by Gaussian model stipulates that an outlier is given by a

point X > |i + 30|. Since the arithmetic mean as a measure
of central tendency that is affected by the outliers, and we
know that in a perfectly symmetric data, the mean, the
mode and the median are the same [20, 21], the study
replaced the mean with the median since the median is a
measure of central tendency that is not affected by the
existence of the outliers in the dataset [22]. This lead to the
same equation given as;

X > [Med + 30| (1)

The study expects the formula to be better than the
Gaussian outlier detection method given we have done
away with a measure of central tendency that is affected by
the outliers. Moreover, since the standard deviation is a
measure of variation that is affected by the existence of the
outliers in the dataset and definitely will affect the accuracy
of the detection, the study therefore found it necessary to
replace the standard deviation with a geometric mean. The
geometric mean however was calculated around the median,
a measure of central tendency that is not affected by the
outliers [22, 23], so as to come up with a geometric mean
that is also not affected by the existence of the outliers in
the dataset. The study expects this to make our outlier
detection formula even better. The formula will therefore be
given as;

X > [Med + 3G )

The next task now is to calculate the geometric averages
with respect to the mean, this is given as, the study borrowed
a concept from [24]

G = YT, (xi — Med)

While formulating the G, the study established that most
important is the deviation from the median can either take a
positive, a negative or a zero value, making the formula not
applicable in an event we get a negative value since we
cannot get a real root of a negative number. In response to
this shortcoming, the study took the absolute of the
deviations given the rule of geometric averaging holds that
most important is the magnitude of the deviation and not
the direction [25, 26]. By doing so, we obtain the equation
as;

G ="YITY, |xi — Med)|

The next challenge comes when some data points are
equal to the median leading to zero deviation, thus, the
product of the deviation from the median will eventually
be zero leading to indefinite root. In response to this
problem, the study added an arbitrary constant k. The
study derived constant K by identifying the best constant
that best detects outliers in low dimensional data-set and
as well have the least effect to the deviation, the constant
was obtained by plotting these constants against outliers
removed in given sets of data. This is as shown in Figure 7
below;
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Figure 7. Curve used to derive the most appropriate k-value.

The curve flattened at the 9™ constant which was 0.1, even
though the other constants removed the same number of
outliers after flattening, the study considered the least of
these constants (0.1) which will have the least effect on the
deviation from the median given the study doesn’t want to
interfere much with the deviation from the median. The
formula therefore becomes;

n di| +k,i=1..n
¢ = [ AT E
\/Hl‘l xi = Med

Where di=[xi-Med| and k=0.1

The study further introduced logarithms in order to help in
eliminating infinite number that are likely to arise when the
population size is large as the geometric measure of variation
from the median is being calculated. This gives;

C= {exp (—Zr:llog(lxi_Mede)),x1 # x2 # - #* Med
0,x1 =x2=-+= Med
Where k=0.1

Therefore the new formula for outlier detection will state
that an outlier is any point given as;

X>Med+3G]|

3. Results

To test for the effectiveness of the newly invented formula,
the study examined and compared the sensitivity of the two
Gaussian detection techniques (Xi>Q3+k(IQR) or Xi<Ql-
k(IQR)).

The study formulated random normal data-sets to help in
randomly obtaining the data for simulation. This was done by
combining two randomly formulated data-sets with varying
mean and standard deviation to help examine the effect of
changing either the mean or the standard deviation to the
sensitivity of the model. Given the Gaussian formula under
scrutiny (X > |u + 30| ) uses two measure of central
tendency that are affected by the outliers, this process was
done in two ways;

1. Combining two data-sets with constant standard
deviation but varying mean

The first simulation is summarized in the table below;

Table 1. Outliers detected by all formulas with first set of data.

Technique New formula Gaussian 1st equation Gaussian 2" Equation
Outliers available 5 5 5
Outliers removed 7 6 4

From table 1, the first simulation, the study combined the
first data set (X1; n=50, p =4 and o = 2) with (X2; n=5, p =
30 and 6 = 2), with (X2; n=5, p = 30 and o = 2). The
expected 5 outliers from the combined datasets were then
subjected to the three detection techniques. The study
simulated the dataset in the first Gaussian detection technique
(Xi > Q3 +k(IQR)) or Xi < Q1 —k(IQR)), 6 outliers were
detected as shown in the table above (Refer to Appendix 1:
Figure 8). When the same dataset was simulated against the

second Gaussian equation (X >|p + 30|), 4 outliers were
detected (Refer to Appendix 1: Figure 9).

When the outliers were simulated in the new equation, 7
outliers were detected (refer to Appendix 1: Figure 10).

From the results, the new formula eliminated the most
number of outliers (7), the number exceeds the expected
number of outliers, 5, since when two datasets of different
means are combined they form a new mean, therefore the
outliers are likely to be more or less than were suppose.
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The Gaussian second equation performed second best with
6 outliers eliminated. The Gaussian equation under scrutiny
managed to detect only 4 outliers, this may be attributed to
by the fact that it use the measures of central tendency that is

affected by the outliers.

The study examined another pair of datasets, (X3; n=250,
p=15and o =5) and (X4; n=10, p = 80 and ¢ = 5).

The table below summarizes the simulations.

Table 2. Outliers detected by all formulas with second set of data.

Technique New formula Gaussian 1st equation Gaussian 2" Equation
Outliers available 10 10 10
Outliers removed 22 12 10

From table 2, when the data was simulated using the first
Gaussian formula (refer to Appendix 2: Figure 11), 10
outliers were detected. When the data was simulated against
the second Gaussian formula (refer to Appendix 2: Figure
12), 10 outliers were detected.

Finally, when the dataset was simulated against the new
detection technique and 22 outliers were detected.

The new formula eliminated the more outliers compared to
the rest which may be contributed to by the fact that it uses
measures that are least affected by the outliers. The Gaussian
equation with the interquartile range once again performed
better, eliminating 12 outlies. The equation under scrutiny

(the second Gaussian equation) eliminated the least number
of outliers.

The number of outliers removed differ and may be even
more than expected because the moment two datasets are
combined, they form a new mean interfering with the number
of outliers as outliers by definition, are observations that lip
an abnormal distance from the mean.

The study carried another sensitivity test on another sets of
datasets by combining (X5; n=150, p = 90 and ¢ = 5) with
(X6; n=25, 1 =200 and 6 = 5).

The summary is as shown in the table below;

Table 3. Outliers detected by all formulas with third set of data.

Technique New formula Gaussian 1st equation Gaussian 2™ Equation
Outliers available 10 10 10
Outliers removed 27 26 26

When the outliers were simulated using the first Gaussian
equation (Xi > Q3 + k(IQR) or Xi < Q1 k(IQR)), 26 outliers
were eliminated (Refer to Appendix 3: Figure 14).

When the outliers were simulated using the Gaussian
second equation, 27 outliers (refer to Appendix 3: Figure
15).

Finally, when the data was simulated against the new
detection technique, 26 outliers were detected (Refer to
Appendix 3: Figure 16).

The three techniques performed relatively the same even
though the new technique eliminated one more outlier than
the rest.

2. Combining two data-sets with constant mean but
varying standard deviation

The study examined the sensitivity by combining (X7;
n=250, p =40 and ¢ = 45) with (X8; n=15, p =40 and 6 = 5).

The finding are summarized in the table as shown;

Table 4. Outliers detected by all formulas with first set of data.

Technique New formula Gaussian 1st equation Gaussian 2" Equation
Outliers available 15 15 15
Outliers removed 27 4 1

Simulating the outliers using the Gaussian first equation, 4
outliers were removed. The Gaussian second equation
eliminated 1 outlier and the new detection technique removed
27 outliers.

The study also examined the following datasets;

(X9, n=500, u = 20 and o = 10) and (X10; n=55, u =
20 and o = 5). The summary is as shown in the table
below;

Table 5. Outliers detected by all formulas with second set of data..

Technique New formula Gaussian 1st equation Gaussian 2™ Equation
Outliers available 55 55 55
Outliers removed 72 8 3

Simulating the outliers using the Gaussian first equation, 4
outliers were ejected from the data-set, the Gaussian second
equation detected 1 outlier while the new equation once
again removed the most, 27. This may be as a result the use
of measures of central tendencies that are least affected by

the outliers. Lastly, the study examined the sensitivity in one
more pair of data-sets; (X9; n=500, p = 20 and ¢ = 10) with.
When the outliers were detected, the Gaussian first equation
ejected 8 outliers, 3 by the second equation and 72 by the
new equation. The new equation is stricter because the



6 Ooko Silas Owuor et al.: Outlier Detection Technique for Univariate Normal Datasets

measures it uses are not affected by the outliers.

4. Summary

The study sought to determine the Outlier detection for
univariate data set using geometric technique. The study
sought to empirically detect outliers using the univariate
normal outlier detection technique in simulated data. The
study also aim to measure precision of the univariate outlier
detection model in comparison to the Gaussian outlier
detection models. The data used in this study was randomly
generated from a normal distribution. This chapter gives a
summary of the findings, makes conclusions and
recommendations based on the findings.

1) Summary of findings

The study sought to establish an outlier detection
technique for univariate normal datasets. The measures of
central tendency in the Gaussian equation (X > u + 30) which
are highly affected by the outliers were replaced by those that
are least affected by the outliers to form a new equation
which defined an outlier as a point X > Med 3G.

The study sought to empirically detect outliers using
univariate normal outlier detection technique in simulated
data. The normal data sets were randomly generated and

Appendix

simulation done using the new formula, the study noted that
the formula was able to detect the outliers in the data-set.
Univariate normal outlier detection model in comparison to
the Gaussian outlier detection model. The study formulated
same sets of datasets and observed the sensitivity of the
models.

2) Conclusion

After conducting sensitivity test on several sets of datasets,
the study established that the new formula is the best in
outlier detection, in all cases examined it performed better
than the Gaussian detection model (X > u + 30). The second
Gaussian equation (Xi > Q3 + k(IQR) or Xi < Q1 k(IQR))
performed as well as the new formula (X > Med +/- 3G).

When there was variation in mean but constant standard
deviation. This, however, was not the case when standard
deviation was varied with constant mean, in this case the new
model detected more outliers than any of the two Gaussian
equations. This is due to the fact that the new equation used
on the measures that are least affected by the outliers.

The new equation proved more sensitive and precise in
outlier detection. Even though the new technique was stricter
when the standard deviation was varied, it still stands as the
best technique according to the study as an outlier is defined
relative to the mean and not the standard deviation.

Appendix 1. Outlier Detection Simulation for Small Data Sets with Mean Variation

Figure 8. Sensitivity of Gaussian 1" equation with variation in mean.

Figure 10. Sensitivity of the New Equation with variation in mean.
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Appendix 2. Outlier Detection for Moderately Large Data Sets with Mean Variation

Figure 11. Sensitivity of Gaussian I* equation with variation in mean.
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Figure 13. Sensitivity of the New Equation with variation in mean.
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Appendix 3. Outlier Detection Simulation for Large Data Sets with Mean Variation
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Figure 15. Sensitivity of Gaussian 2" equation with variation in mean.
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Figure 16. Sensitivity of the New Equation with variation in mean.
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Appendix 4. Outlier Detection Simulation for Large Data Sets with Standard Deviation Variation
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Figure 19. Sensitivity of the New Equation with variation in standard deviation.
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Appendix 5. Outlier Detection Simulation for Very Large Data Sets with Standard Deviation Variation
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Figure 21. Sensitivity of Gaussian 2" equation with vari- ation in standard deviation.
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Figure 22. Sensitivity of the New Equation with variation in standard deviation.
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